VSEPR Worksheet | 1) | What | is the main idea behind VSEPR theory? | | |----|---|---------------------------------------|--| | 2) | For each of the following compounds, determine the bond angles, molecular shapes, and hybridizations for all atoms: | | | | | a) | carbon tetrachloride | | | | | | | | | b) | BH ₃ | | | | | | | | | c) | silicon disulfide | | | | | | | | | d) | C_2H_2 | | | | | | | | | e) | PF ₃ | | | | | | | ## **VSEPR Worksheet - Solutions** 1) What is the main idea behind VSEPR theory? The main idea is that electrons don't like to hang around near each other because they repel each other. As a result, the atoms in a molecule tend to separate as far as they can because their bonds repel each other. - 2) For each of the following compounds, determine the bond angles, molecular shapes, and hybridizations for all atoms: - a) carbon tetrachloride Carbon is tetrahedral, 109.5⁰ bond angle, and sp³ hybridized. Chlorine is linear, has no bond angle, and is sp³ hybridized b) BH_3 Boron is trigonal planar, 120⁰ bond angle, and sp² hybridized. Hydrogen is linear, has no bond angle, and no hybridization c) silicon disulfide Silicon is linear, has a 180⁰ bond angle, and is sp hybridized. Sulfur is linear, has no bond angle, and is sp² hybridized. d) C_2H_2 $$H-C \equiv C-H$$ Carbon is linear, has a 180⁰ bond angle, and is sp hybridized. Hydrogen is linear, has no bond angle, and no hybridization. ## e) PF₃ Phosphorus is trigonal pyramidal, has a bond angle of 107.5⁰, and is sp³ hybridized. Fluorine is linear, has no bond angle, and is sp³ hybridized.